If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-576=0
a = 9; b = 0; c = -576;
Δ = b2-4ac
Δ = 02-4·9·(-576)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*9}=\frac{-144}{18} =-8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*9}=\frac{144}{18} =8 $
| (6x+29)=(13x+8) | | -0.75+0.55x=6.4 | | -1/2x+6=9 | | B=35-3p | | 20x+13-16x=33 | | -(4x-9)=2x | | -6x+28+-4x+20=180 | | 10=-2(x-1)+3x | | -8+5n+8-5n=0 | | 1-(2+4)=-4x+5 | | m^2+40m=0 | | 2x-4+x=-8+2x | | 2(x-3)+2/3=x-1 | | 2x+x+x+2=2x+19 | | 6n+4=−26 | | 12+16=4(6x-7) | | 5x-3.5x=14.4 | | 3(2k+7)-5k+4=24 | | 14=3y- | | -8+s=16 | | 2(3x+5)=34-2x | | 4(2x-7)=18 | | 15+10v=13 | | 5n/3-8=-2 | | 484f^2+44f+1=0 | | 12=k-9/5 | | (5+3i)-(7-8i)=0 | | 24+x+11=5x+11 | | 17x-8=175 | | 3(x+4)=3x+5 | | -(3b+15)=6(2b=5) | | j+4j−3=17 |